
1 Variable Transformations 

Abstract 
Variable transformation methods are presented to recover the normality and the equal-standard 

deviation conditions required by many statistical analysis methods. 
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Related Methods 

• Graphical methods for assessing normality: histograms, histograms with superimposed normal 
curves, normal probability plots 

• Quantitative tests for normality: Kolmogorov-Smirnov test, Lillifors test, Anderson-Darling test 

• Quantitative tests for equal standard deviations (i.e. homoscedasticity): F test, Levene's test, 
Bartlett's test 

• Transformations: square root transform, Freeman-Tukey transform, power transform, Box-Cox 
transform, Johnson transform 

Introduction 
Many statistical analysis methods assume that the distribution of the population being studied fol­

lows the bell-shaped or normal distribution. In addition, if two or more populations are being compared, 
such as to test for a difference between their means, many analysis methods require that the populations 
being tested also have equal standard deviations - a condition called homoscedasticity. When one or 
both of these requirements are violated, the distribution normality and/or the homoscedasticity con­
dition can often be recovered by applying a mathematical transformation to the original data. After 
an appropriate transformation is applied, then the usual analysis methods which require normality and 
homoscedasticity may be used. 

The purpose of this document is to describe the use of variable transformations to enable the use of 
statistical analysis methods which require normality and homoscedasticity. Methods for transforming 
non-linear scatter plots to linear scatter plots are outside the scope of this document. 

Where the Technique is Used 
The transformation method is applied to attribute (i.e. count) data and variable (i.e. measurement) 

data which are non-normal and/or are from two or more populations with different standard deviations 
for the purpose of recovering the normality and homoscedasticity conditions so that classical normal­
theory statistical methods may be used. 

Procedure 
The following procedure may be used to apply the variable transformation method: 

1. Collect a representative random sample (or samples) from the population(s) of interest. 

2. If the issue is distribution shape: 
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(a) Construct a histogram and/or normal probability plot of the sample data. 

(b) Interpret the plots to determine if the data are normal. 

(c) A quantitative test for normality (such as the Kolmogorov-Smirnov test, Lillifors' test, or the 
Anderson-Darling test) may also be helpful. 

(d) If the data are not normal either: 

i. Identify and apply the correct, theoretical distribution 
ii. Apply an appropriate variable transformation. Well known variable transformations 

are available for certain types of data, but it might be necessary to consult with a 
subject matter expert on a more challenging problem. Evaluate the transformed data 
for normality. 

3. If the issue is non-normality and/or heteroscedasticity in two or more treatment groups: 

(a) Construct histograms and/or normal probability plots of the sample data superimposed on 
the same graphs. 

(b) Interpret the plots to determine if the data are normal and homoscedastic. 

(c) A quantitative test for normality (such as the Kolmogorov-Smirnov test, Lillifors' test, or 
the Anderson-Darling test) and/or heteroscedasticity (such as the two-sample F test or the 
many-sample Levene's or Bartlett's tests) may be helpful. 

(d) If the distributions are not normal and/ or homoscedastic, apply an appropriate variable 
transformation. 

(e) Evaluate the transformed distributions for normality and homoscedasticity. 

Assessing Normality 
A variety of methods for assessing the normality of a sample are available, but they do not all 

have equal sensitivity for detecting non-normal distributions. This section makes a quick comparison of 
three methods for assessing normality: histograms, normal probability plots, and quantitative tests for 
normality. In practice all three methods should be used. 

The most common method used to assess normality is the histogram, often with a superimposed 
normal curve, however, it's difficult to accurately judge the agreement between the compound curvature 
of the normal curve and the discrete bars of the histogram. This issue is severe enough that other 
methods for assessing normality are preferred. 

A much better graphical method than a histogram for evaluating normality is the normal probability 
plot or normal plot. A normal plot is a form of two-dimensional scatter plot which plots the observed 
data values versus their predicted values, where the predicted values are calculated under the assumption 
that the observed values come from a normal population. Predicted values may be expressed in different 
ways, but they are usually expressed in terms of normal probability percentage points. Interpretation of 
a normal plot is simple: if the plotted points fall along a substantially straight line then the normality 
assumption is probably true but if the plotted points deviate substantially from a straight line, often in 
a hockey-stick or S-shaped curve, then the normality assumption is probably false. 

The interpretation of histograms and normal plots is subjective; it takes much training and practice 
to learn to use them accurately. Quantitative tests for normality are often used to supplement both 
graphical methods. There are many quantitative methods for testing normality: the Anderson-Darling 
test, the Wilk-Shapiro test, the Kolmogorov test, Lillifors' test, the chi-square goodness of fit test, 
and others. (The Anderson-Darling test is the most popular one in use today.) The test statistics for 
these tests are all calculated in different ways, but they all involve some measure of deviation from a 
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